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SUMMARY

A computational procedure is presented for solving complex variably saturated �ows in porous
media, that may easily be implemented into existing conventional �nite-volume-based computational
�uid dynamics codes, so that their functionality might be geared upon to readily enable the modelling
of a complex suite of interacting �uid, thermal and chemical reaction process physics. This proce-
dure has been integrated within a multi-physics �nite volume unstructured mesh framework, allowing
arbitrarily complex three-dimensional geometries to be modelled. The model is particularly targeted at
ore heap-leaching processes, which encounter complex �ow problems, such as in�ltration into dry soil,
drainage, perched water tables and �ow through heterogeneous materials, but is equally applicable to
any process involving �ow through porous media, such as in environmental recovery processes. The
computational procedure is based on the mixed form of the classical Richards equation, employing an
adaptive transformed mixed algorithm that is numerically robust and signi�cantly reduces compute (or
CPU) time. The computational procedure is accurate (compares well with other methods and analytical
data), comprehensive (representing any kind of porous �ow model), and is computationally e�cient. As
such, this procedure provides a suitable basis for the implementation of large-scale industrial heap-leach
models. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main objective of the work described here is the development and implementation of a
three-dimensional numerical procedure for computational modelling of �ow through variably
saturated porous media. Developing robust, e�cient numerical methods that handle a wide
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range of �ow scenarios, i.e. variably saturated porous media domains that contain materi-
als with spatially varying properties, in�ltration into dry soil and perched water tables, has
provided a computational challenge to the simulation community. There are a number of com-
mercial software tools available that have been speci�cally designed for the solution of the
three-dimensional Richards equation for porous �ow problems; see, for example, the codes
SWMS-3D [1], 3DFEMFAT [2], SVFLUX [3] and FEMWATER [4].
However, there are now a series of general-purpose commercial computational �uid

dynamics (CFD) codes available (see, for example, References [5–7]), which enable a vast
array of complex thermo-�uid physics to be represented. Thus, the objective of this paper is
to develop a computational method for solving the variably saturated �ow equations in the
context of the computational environment typi�ed by the generic CFD codes, so that their
other features (i.e. well-established transport, thermal and chemical reaction procedures) might
be utilized in comprehensive modelling of reactive porous-media-based processes, such as
industrial heap-leaching processes [8]. Characterizing variably saturated �ow within complex
three-dimensional geometries represents a key stage in the development of a comprehensive
model of heap leaching. In this work the variably saturated �ow algorithm is implemented
within PHYSICA, a general-purpose CFD computational modelling software frame work for
multi-physics processes, based upon �nite volume discretizations and expressed over three-
dimensional unstructured meshes [9] with any mix of elements from tetrahedral to hexahedrals.
Flow through variably saturated porous media is characterized by the classical Richards

equation combined with one of a number of laws to relate the pressure head to the moisture
content of the porous medium. There are three standard forms of the Richards equations:
h-based (pressure head), �-based (moisture content) and ‘mixed’ form where both variables
are employed:
(1) The h-based form, where the primary variable is the pressure head,

C(h)
@h
@t
=∇[K(h)∇h] + @K(h)

@z
(1)

where C(h) is the speci�c moisture capacity, is de�ned as

C(h) =
@�
@h

(2)

The h-based form allows for both unsaturated and saturated conditions. However, in highly
non-linear problems, such as in�ltration into very dry heterogeneous soils, these methods can
su�er from mass-balance error, convergence problems and poor CPU e�ciency. As discussed
by Celia et al. [10], ‘The reason for poor mass balance resides in the time derivative term’.
While d�=dt and C(dh=dt) are mathematically equivalent in the continuous partial di�erential
equation, their discrete analogues are not. The inequality in the discrete forms is exacerbated
by the highly nonlinear nature of the speci�c capacity term C(h). This leads to signi�cant
mass-balance errors in the h-based formulations because the change in mass in the system is
calculated using discrete values of d�=dt while the approximating equations use the expansion
C(h)(dh=dt). Using standard time-integration techniques, mass-balance errors grow with the
time-step size. Various approaches have been developed to overcome the problem. Milly
[11] proposed a mass-conserving solution that modi�es the capacity term to force global
mass balance. Pan et al. [12] proposed a mass-distributed scheme that satis�ed mass balance
and was oscillation free. Tocci et al. [13] have shown that using a di�erential algebraic

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1085–1117



COMPUTATIONAL MODEL FOR VARIABLY SATURATED FLOW IN POROUS MEDIA 1087

equation implementation of the method of lines results in good mass balance through time-
step truncation-error control.
(2) The �-based form, where the primary variable is the moisture content,

@�
@t
=∇[D(�)∇�] + @K(�)

@z
(3)

where D(�) is the hydraulic di�usivity. One of the advantages of the �-based formulation is
that perfectly mass conservative discrete approximations can be applied. However, this form
degenerates under fully saturated conditions as heterogeneous material produces discontinuous
� pro�les and a pressure–saturation relationship no longer exists [14].
(3) The ‘mixed’ h–�-based model

@�
@t
=∇[K(h)∇h] + @K(h)

@z
(4)

where both the moisture content and pressure head variables are employed in the solution.
Numerical techniques that employ both � and h in the solution procedure have been developed
to minimize mass-balance errors and enhance computational e�ciency. Kirkland et al. [15]
de�ned a new variable, which is essentially the saturation in the unsaturated zone and the
pressure in the saturated zone. Forsyth et al. [16] used a similar technique but employ variable
substitution using a di�erent primary variable in di�erent regions. Diersch and Perrochet [17]
used a primary variable switching technique, which is unconditionally mass conservative.
This method involves assembling and solving an unsymmetric equation system at each time
and iteration level which increases CPU time but reported faster convergence behaviour. Celia
et al. [10] proposed a modi�ed Picard iteration scheme that ensures mass balance by evaluating
the moisture content change in a time step directly from the change in the water pressure head.
It has been shown to provide excellent mass balance when modelling unsaturated problems
with sharp wetting fronts [18]. This method is easy to implement into h-based codes, requiring
only an additional source term. Huang et al. [19] proposed a computationally more e�cient
convergence scheme for the modi�ed Picard iteration method based on using the pressure
head as the primary variable. However, problems have been reported when employing the
Celia et al. [10] mixed method form for free drainage problems [20, 21]. Hao et al. proposed
a simple switching method between the mixed form modi�ed Picard iteration scheme and the
standard h-based Picard iteration scheme according to the local soil–water conditions. Hao
et al. showed that the mass-balance error in the mixed form is closely related to the water
capacity and time-step size. If relatively large values are encountered, mass-balance errors can
accumulate with longer simulation times and larger domains. The h-based form can achieve
good mass balance if the change in h is small enough during a time step whereas the mixed
form improves mass balance with a sharp wetting front. Therefore, combining these, makes
a more e�cient procedure for long time simulations of water �ow in soils with frequent
in�ltration and deep drainage processes. The method switches to the h-based form when the
change in h is less than some prescribed value, otherwise the mixed form is applied.
Developing robust and e�cient algorithms for certain �ow problems, such as those that give

rise to sharp wetting fronts, has provided a computational challenge to the simulation commu-
nity. For this class of problem, small time-step sizes and a �ne mesh is often required in order
to maintain stability when steep wetting fronts develop, making large-scale multi-dimensional
in�ltration problems impractical to simulate. Since the solution changes in character with time,
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employing a small time step-size not only adds signi�cantly to CPU time, but also results in
valuable computing time being spent on periods of simple solution behaviour with excessively
small time steps [22]. In order to overcome the need for �ne spatial and temporal discretiza-
tion, transformation methods and adaptive grid algorithms [23–25] have been investigated
by many authors. Employing local adaptive grid re�nement into the numerical models can
overcome the need for a �ne mesh, but the computational cost is high and their introduction
into three-dimensional codes is not trivial [26]. A number of authors have proposed mathe-
matical transformations to reduce the nonlinearity of the equations, notably Haverkamp et al.
[27], integral function, Ross [28], hyperbolic function, Kirkland et al. [15] and Forsyth et al.
[16], variable switching, Pan and Wierenga [29], rational function and Williams et al. [30],
a combined integral and water-content-based transformation. Transformations [15, 16, 27] are
based, to some extent, on the soil hydraulic functions and vary spatially with media type.
This dependency results in a discontinuity of the transformed variable in the case of hetero-
geneous media restricting their application to homogeneous media. Transformations [28–30]
are continuous in heterogeneous media domains when constant transformation parameters are
applied. Williams et al. [30] provided a comparison on the fore-mentioned transformations
using �xed time-step methods and reported that their proposed combined integral method and
the Pan and Wierenga transform function ‘were able to provide accurate solutions at much
larger discretization scales, resulting in very e�cient simulations that would not be possi-
ble using untransformed RE or other transform methods investigated’. The combined integral
method is a more complex approach, de�ned in terms of the moisture content and an integral
of the hydraulic conductivity function.

ht =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ h

−∞
K(h′) dh′ + �[�(h)− �r]; h6 0

@p
@h

∣∣∣∣
h=0

∗h+ ht(0); h¿0

(5)

The Pan and Wierenga approach [29], uses a simple non-linear transformation, is easy to
incorporate into computational algorithms and is not dependent on the hydraulic properties.
The pressure head variable (h) is transformed into a new dependent variable (ht),

ht =

⎧⎪⎨
⎪⎩

h
1 + �h

; h¡0

h; h¿ 0
(6)

where � is a universal constant (∼= − 0:04 cm−1 or −4m−1) independent of both the K(h)
and C(h) relationship.
Equation (4) now becomes

@�
@t
=∇[K∗(h)∇h] + @K(h)

@z
(7)

where @#=@t can be written as

@#
@t
=
@#
@h

@h
@ht

@ht
@t
=C∗(h)

@ht
@t

(8)
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C∗(h) is the transformed speci�c water capacity, given as

C∗(h)=C(h)
@h
@ht

=C(h)[1 + �h]2 (9)

K∗(h) is the transformed hydraulic conductivity, given as

K∗(h)=K(h)
@h
@ht

=K(h)[1 + �h]2 (10)

This transformation reduces the non-linearity of the hydraulic conductivity and volumetric
water fraction as functions of the pressure head.
As observed by Mansell et al. [26] critical features of this method are that:

(1) Near saturation, �h� 1, so that ht = h for h¿=0
(2) For the speci�c case when h=0, then C∗(h)=0 and K∗(h)=Ksat and the continuity

for both ht and @ht=@t is ensured at h=0.
(3) For large negative values of h, then for vertical �ow, @ht=@z¡@h=@z which results in

both faster convergence and less mass-balance error conditions involving large gradients
of h.

(4) For zero and positive values of h then @ht=@z= @h=@z and @ht=@z¿@h=@z, respectively.

This transformation has been shown to signi�cantly improve convergence and CPU e�ciency,
see References [29–32].
Williams and Miller [32] investigated the transformation methods [29, 30] together with

adaptive time-stepping schemes for e�ciency and robustness. Using an adaptive time-stepping
scheme to adjust the time-step size improves convergence of the non-linear solution. They
compared the empirically based adaptive time-stepping (EBATS) method [23] with Tocci
et al.’s [13] di�erential algebraic equation-based method of lines (DAE=MOL). The EBATS
approach is simple to implement into existing �xed time-step codes but requires the speci�ca-
tion of a set of parameters for which there is no theoretical guidance. Nevertheless, EBATS
has been commonly employed in a number of codes, such as SWMS-2D [33], FEMWA-
TER [34] and HYDRUS [35] to improve e�ciency and robustness. The DAE=MOL approach
estimates temporal truncation error to explicitly control the solution order and time-step size.
Williams et al. reported DAE=MOL to be generally more e�ective than the EBATS method
for high levels of accuracy but it is not so straightforward to implement in general-purpose
CFD codes.
In a recent review, Mansell et al. [26] summarize the use of adaptive-grid-re�nement tech-

niques to capture the moisture interface with appropriate levels of precision for numerical
simulation. They identify two main ways of addressing the challenge posed by the moving
boundary at the moisture interface. One concerns the transformation of the original equations
so that the discontinuity is smoothed out in some way, whilst the second involves the use
of adaptive-grid-re�nement techniques. The second is undesirable in modelling reactive trans-
port in porous media (such as, heap leaching) because there is so much else going on in
terms of gaseous �ow, chemical reactions and thermal transport, that a �xed-grid solution is
much preferred if a suitably accurate procedure can be identi�ed. The �xed-grid route is the
standard route for the solution of another class of moving boundary problems, solidi�cation
and melting, see, for example, Reference [36, 37] where very convoluted �ow physics oc-
curs within complex three-dimensional geometries. At the phase change from liquid to solid
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there is a discontinuity in the thermal gradient due to the latent heat evolution or consump-
tion and capturing this feature numerically presents a signi�cant challenge. However, in these
equations, the enthalpy rather than the temperature is normally solved for and conserved—
this physical variable varies smoothly across the phase-change region, and therefore presents
no particular challenges to the numerical procedures. Coupled with suitable temperature–
-fraction solid relationships, all the physical variables of interest can be recovered and tracked
in a numerically robust fashion using a �xed-grid approach. Employing a transformation
method appears to provide the potential for a similar kind of solution route for solving variably
saturated �ow in complex porous domains in a manner similar to that of solidi�cation=melting
moving boundary problems.
There are wide ranges of techniques and discretization methods employed in a variety

of ways in the solution of the Richards equations. For example, Huang et al. [38] use an
adaptive moving mesh and �nite element discretization, Manzini and Ferraris [39] investigate
mass conservative �nite volume methods on two-dimensional unstructured grids, Voller [40]
employs Celia’s [10] mass conservative scheme using the control volume �nite element (i.e.
unstructured mesh) method. Rees et al. [41] employs Forsyth et al. [16] variable substitution
technique using an edge-based �nite volume scheme. In both of these cases, the variable
is solved for at the vertex of each cell or element. In this work we report an e�ective and
robust procedure, where the variables are solved at the cell=element centre and which can eas-
ily be implemented into a conventional �nite-volume-based CFD code. The Pan and Wierenga
[29] transformation was chosen for its simplicity and ability to provide solutions at relatively
large discretization scales. The mixed form of the Richards equation is solved, employing the
‘Celia linearization’ [10] to ensure mass balance and the simple switching Picard iteration
scheme [21] to improve solutions for free drainage problems. The algorithm allows for ei-
ther the Brooks–Corey [42] or the van Genuchten [43] pressure-head–moisture relationships
to be employed. A simple empirical adaptive time-stepping scheme was used, not only for
its ease of implementation, but also for its ability to improve computational e�ciency and
solution robustness. This computational approach is implemented and tested within PHYS-
ICA, a general-purpose CFD computational modelling software framework for multi-physics
processes [44]. This code uses a three-dimensional �nite volume formulation expressed on an
unstructured mesh framework with conventional cell-centred discretizations and appropriate
interpolations to ensure �ux conservation across the cell faces, as might be found in any of
the leading general-purpose CFD codes.

2. THE BASIC MATHEMATICAL MODEL: FORMS OF THE RICHARDS
EQUATION AND PRESSURE-HEAD–MOISTURE-CONTENT

RELATIONSHIPS

The Richards equation is written in terms of the water pressure head and the water moisture
variables, and is de�ned by coupling the �ow continuity equation with the Darcy �ux equation.

2.1. Variables

The main variables used to describe the movement of moisture through variably saturated
regions are:
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The pressure head or capillary head (h) de�ned as

h=
P
�g

(11)

where P is the pressure, �g is the speci�c weight of water. In unsaturated regions h will take
negative values due to capillary suction. In saturated regions all voids are �lled with moisture
and h¿ 0.
The total hydraulic head (H) is

H = h+ z (12)

where z is the elevation head, with the vertical distance assumed upwards.
The moisture content (�) takes the saturated value, �sat, in saturated regions and in unsatu-

rated regions is dependent upon h, giving �res¡�(h)¡�sat, where �res is the residual moisture
content of the material.

2.2. The volumetric �ow rate

The Darcy equation describes the movement of moisture in saturated porous �ow,

qxi =−Ksat @H@xi (13)

where q is the �ux in the xi direction and Ksat is the saturated hydraulic conductivity.
For unsaturated porous �ow, Equation (13) is modi�ed so that the hydraulic conductivity

is expressed as a function of the pressure head,

qxi =−K(h) @H
@xi

(14)

To ensure mass conservation, the volumetric continuity equation also needs to be satis�ed.

@�
@t
=−@qx

@x
− @qy
@y

− @qz
@z

(15)

Substituting (14) into (15) and rewriting in terms of the pressure head (h) gives the mixed
form of the Richards equation (4).

2.3. Pressure-head—moisture-content relationship

The mixed form of the Richards equation (4), is written in terms of two unknown variables,
moisture content (�) and pressure head (h). Hence, to complete the model for variably satu-
rated �ow, constitutive relationships for pressure-head–moisture-content–hydraulic-conductivity
need to be speci�ed. The most commonly employed models by the community and used within
in this work, are given below.
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Brooks–Corey [42]

�=

{
(�sat − �res)(h=hd)−n + �res; h¡hd

�sat ; h¿ hd
(16)

K =Ksat

[
�− �res
�sat − �res

]3+2=n
(17)

van Genuchten [43]

�=

⎧⎪⎨
⎪⎩
�res +

�sat − �res
[1 + |�h|n]m ; h¡0

�sat ; h¿ 0
(18)

K =Ksat

[
�− �res
�sat − �res

]0:5 [
1−

(
1−

[
�− �res
�sat − �res

]1=m)m]2
(19)

where and � and n are material parameters which a�ect the shape of the soil hydraulic
functions and m=1− 1=n, hd=−1=�.
The unsaturated soil hydraulic properties �(h) and K(h) are in general highly nonlinear

functions of the pressure head. It is this highly nonlinear dependency of the hydraulic proper-
ties on the pressure head makes solution of the Richards equation problematic, and requiring
a sophisticated numerical scheme, such as the one described below.

3. NUMERICAL FORMULATION—FINITE VOLUME DISCRETIZATION ON AN
UNSTRUCTURED MESH

In order to solve the governing partial di�erential equation for variably saturated �ow, a �nite
volume discretization scheme is employed. The solution domain is divided into a number of
non-overlapping �nite control volumes (i.e. elements) and the governing equation is integrated
over each control volume as well as over time. This method ensures that mass conservation is
enforced locally by means of consistent expressions for �uxes through the faces of adjacent
control volumes. The approach is usually described over structured meshes in most conven-
tional CFD-based texts, see Reference [45], but has now been extended to arbitrarily structured
meshes, and is used as the basis for most of the leading commercial CFD codes [6–8]. In
these software technologies, and in that employed here, the hydraulic variables are solved at
the centre of the cell. Special care is taken to avoid oscillatory solutions for Navier–Stokes
�ows, typically through the use of Rhie–Chow-type approximations [46] when calculating
the element-face �uxes. For porous �ow calculations the �uxes are evaluated directly from
adjacent element pressure values. However, there may be ambiguity in evaluating the face
hydraulic conductivity values, kf, at an interface between control volumes. Its value could
be calculated using an arithmetic mean or a harmonic mean. For converging solutions it was
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found that an arithmetic mean was required in the solution of the transformed Richards equa-
tion but in calculating the inter-nodal �ux the transformation actually modi�es the way kf is
calculated. Applying the transformation to Darcy’s law, the vertical �ux, qj+1=2, at an interface
of two control volumes (i; j) and (i; j + 1) can be written as

qj+1=2 = 0:5

[
kj

(
@h
@ht

)
+ kj+1

(
@h
@ht

)
j+1

] [
(ht)j+1 − (ht)j
hj+1 − hj

] [
hj+1 − hj
@z

]
− 0:5(kj + kj+1) (20)

where the gravity term is evaluated using simple averaging.
Applying the transformation shown in Equation (6), the inter-nodal vertical �ux can be

expressed as

qj+1=2 = 0:5
[
kj

(1 + �jhj)
(1 + �j+1hj+1)

− kj+1 (1 + �j+1hj+1)(1 + �jhj)

] [
hj+1 − hj
@z

]

×
[
1 + hj+1hj(�j − �j+1)

hj+1 − hj

]
− 0:5(kj + kj+1) (21)

Note that the third term on the right-hand side is zero when adjacent control volumes
are either unsaturated or saturated (when �j=�j+1) but is non-zero on an interface between
saturated and unsaturated regions.
Using a cell-centred unstructured mesh fully implicit formulation, the discretized form of

the h-based, Equation (1), for a control volume, P, is

VP
�t
C(h)(h− h0)=∑

f
K(h)fAf

(hA − hP)
df

+
∑
f
AfK(h)fnzf (22)

and for the mixed form, Equation (4), is

VP
�t
(�− �0)=∑

f
K(h)fAf

(hA − hP)
df

+
∑
f
AfK(h)fnzf (23)

where superscript 0 indicates the value at a previous time step, subscript A indicates the value
in the adjacent control volume, f is the face of the control volume, n the outward normal
vector, df the distance across the control volume face, VP the volume, Af the cell face area,
�t is the time interval and K(h)f is evaluated using an arithmetic mean.
The mixed form ensures mass balance by separating the moisture content term into two

parts during the iterative solution process, as proposed by Celia et al. [10],

VP
�t
(�− �0) = VP

�t
C(h)(hn+1 − hn) + VP

�t
(�n − �0) (24)

where n+ 1 and n denote the current and previous iteration levels, respectively. The second
term on the right-hand side of (24) is known prior to the current iteration and enters the
discretized equation as a source,
Applying transformation (6) to Equation (22) the discretized equation is now,

VP
�t
C∗(h)(hn+1t − h0t )=

∑
f
K∗(h)fAf

(ht
n+1
A − htn+1p )
df

+
∑
f
AfK(h)fnzf (25)
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and for Equation (23),

VP
�t
C∗(h)(hn+1t − hnt )=

∑
f
K∗(h)fAf

(ht
n+1
A − htn+1p )
df

+
∑
f
AfK(h)fnzf +

VP
�t
(�0 − �n) (26)

where C∗(h) is the transformed speci�c water capacity, Equation (9) and K∗(h) is the trans-
formed hydraulic conductivity, Equation (10).
The solution, in a time step, of the non-linear Equations (25) and (26) is achieved by

using an iterative solution strategy with all non-linear terms being evaluated at the previous
iteration level. Applying the switching method [21], the absolute value of the pressure head
change, hc, within a time step is calculated as

hc = (|hn+1 − h0|) (27)

If hc is below a speci�ed threshold value, h0, the h-based form (25) is solved, otherwise the
mixed form (26) is solved. The default value of h0 is 3 cm.
The solution procedure is started by obtaining initial values for h, C(h) and K(h). The initial

values are obtained from the pressure-head–moisture-content–hydraulic-conductivity
relationship, Equations (16)–(19), from initial pressure or moisture values. Initially, the h-
based form, Equation (25) is solved.
Within a time step the implicit solution strategy is as follows:

1. Calculate C(h) and K(h) using (16)–(19).
2. Apply transformation (6) to the pressure head �eld to obtain ht .
3. Obtain C∗(h) and K∗(h) from (9) and (10).
4. Obtain new ht �eld: If (hc¡h0) solve (25), else solve (26).
5. Apply inverse transformation of (6) to obtain new pressure head �eld.
6. Update moisture content using (16) or (18).
7. Calculate control volume face �uxes using (21), ∗ if required.
8. Calculate hc (27) and if not converged, repeat 1–8.

NOTE∗: The face �uxes (21) do not form part of the pressure-head–moisture-content solution
procedure but are required when solving other transported quantities.
As highlighted above, the ht transform is free from the di�culties commonly experienced for

heterogeneous materials and with hysteresis problems of the �-based version of the Richards
equation. As such, it has the potential to be both rapidly converging and also to provide
accurate solutions to problems with sharp discontinuities.

4. IMPLEMENTATION OF THE VARIABLY SATURATED POROUS MEDIA FLOW
PROCEDURE AS A PHYSICA MODULE

PHYSICA provides a three-dimensional �nite volume unstructured mesh modular framework
for multi-physics modelling [9, 44]. The framework supplies generic routines to discretize a
general transport equation over a solution domain using cell-centred approximations over an
arbitrarily complex three-dimensional mesh comprised of a mix of tetrahedral, wedge and
hexahedral elements. Aside from a range of linear solvers, additional physical relations, such
as the pressure-head–moisture relationships may be implemented through user routines.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1085–1117



COMPUTATIONAL MODEL FOR VARIABLY SATURATED FLOW IN POROUS MEDIA 1095

A general module for solving variably saturated �ow has been implemented into the host
code, PHYSICA. The default method is outlined above; i.e. it uses the mixed form of the
Richards equations, where both the moisture content and pressure head variables are employed
in the solution of Equation (4), with the pressure head as the primary variable. The method
proposed by Celia et al. [10] can be employed to capture the moisture change in a time
interval and to ensure mass conservation or the switching method proposed by Hao et al.
[21] for free drainage problems. A default value of 3 cm is used for the change in h within
iteration for switching between h-based and mixed form. The mathematical transformation of
Pan and Wierenga [29] is applied to the governing equations to overcome numerical di�culties
associated with highly non-linear hydraulic properties. A default value of −4m−1 is used
for the transformation parameter, �, although an option to change it is included. The van
Genuchten [43] pressure–moisture relationship has been selected as the default value, although
again, the Brooks–Corey [42] relationship has also been implemented and can be selected. An
adaptive time-stepping scheme is used to optimize convergence and CPU e�ciency. Options
on the following models have been implemented within the module using a �nite volume
discretization over a three-dimensional unstructured mesh:

• Solve ‘mixed-form’ or ‘h-based’ equation or ‘switch’.
• Solve ‘classical’ or ‘transformed’ equation.
• Select ‘van Genuchten’ or ‘Brooks–Corey’ model.

So that a wide range of approaches can be evaluated on all the test problems.
The host code solves a general conservation equation using cell-centred �nite volume dis-

cretization techniques over an unstructured three-dimensional mesh. The conservation equation
can be expressed by

@(T��)
@t

+ div(C�u�)=div(D� grad(�)) + S� (28)

The general equation is integrated over each control volume as well as over time. Through the
discretization procedure each term is approximated to produce a system of linear equations of
the form [A][�]= [B], where [�] is a vector of values of � at a number of �nite points in the
solution domain. The host code includes non-linear iterative solution techniques and a number
of linear solver techniques, over-relaxed Jacobi (JOR), over-relaxed Gauss Seidel (SOR),
pre-conditioned conjugate gradient (JCG), pre-conditioned bi-conjugate gradient (BICG), bi-
conjugate gradient stabilized, (BICGSTAB) and GMRES. The JCG linear solver was employed
for the test problems shown.
The porous �ow module is initiated by setting �= ht and the coe�cients in the gen-

eral equation, T�=C∗(h), D�=K∗(h) and C�=0, giving a discretized transformed h-based
Equation (25), for a control volume P with adjacent control volume A,

VP
�t
C∗(h)(ht

n+1
P − ht0P)=

∑
f
K∗(h)fAf

(ht
n+1
A − htn+1p )
df

+
∑
f
AfK(h)fnzf + Sh (29)

where the superscript 0 indicates the value at the previous time step and n is the iteration
level. Equation (29) can easily be adjusted to the transformed mixed form, Equation (26),
by setting h0t to h

n
t in each iterative sweep and including an extra source term based on the
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change in moisture content

Sh=
Vp
�t
(�n − �0) (30)

This simple adjustment from h-based to mixed form allows a switching algorithm to be
employed, solving the h-based form when the change in the pressure within a time step is
small and solving the mixed form when sharp changes occur.
Using a locally conservative �nite volume formulation combined with a Taylor series devel-

opment in time of the water content dependent variable ensures that all converging solutions
are mass conservative. To improve CPU e�ciency a simple adaptive time-step strategy has
been implemented into the procedure here. This method monitors convergence during the sim-
ulation and identi�es an optimum time increment for the solution time period. The simulation
starts with a speci�ed initial time increment, �t. This time increment is automatically adjusted
at each time period according to the following rules:

1. if m16m6m2, then �tn+1 =�tn
2. else if m¡m1, then �tn+1 = min(ft�tn; �tmax)
3. else if m¿m2, then �tn+1 = max(�tn=ft; �tmin)

where m is the number of iterations required to converge for time step n, m1 a lower iteration
limit, m2 an upper iteration limit, ft a time-step acceleration factor, �tmax the maximum
allowable time-step size and �tmin the minimum allowable time-step size.

5. EVALUATION OF THE SOLUTION PROCEDURE ON SOME DISCRIMINATING
TEST PROBLEMS

In order to test and evaluate the solution procedure outlined above, the method is applied to
a number of one- and two-dimensional test cases and compared to results available in the
literature. The one-dimensional test cases involve �ow into a layered soil with variable initial
conditions: moist, intermediate and very dry [29] and a drainage case with initially saturated
conditions [47]. The two-dimensional test cases [15, 17, 29] involve �ow into very dry hetero-
geneous soil. The �rst case is unsaturated �ow resulting in variably saturated conditions. In
the second case, a perched water table develops surrounded by unsaturated soil. These cases
represent good challenges for a numerical algorithm due to their highly non-linear nature.
Finally, the procedure is applied to a three-dimensional geometry that is of signi�cance for
application to industrial heap leaching.

5.1. Problem 1: one-dimensional �ow into a layered soil

The soil pro�le has soil 1 (sand) from 0 to 50 cm and 90 to 100 cm, and soil 2 (clay)
from 50 to 90 cm. The hydraulic properties of the soils are given in Table I. The van
Genuchten model is used to prescribe the pressure–moisture relationship. The initial and
boundary conditions and simulation times are given in Table II. Cases 1.1–1.3 involve purely
unsaturated �ow and Cases 2.1–2.3 are for variably saturated �ow with a perched water
table.
The plots of the steady-state moisture content, Figure 1 for unsaturated �ow and Figure 2 for

variably saturated �ow, are in good agreement with the published results [29]. The simulations
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Table I. Hydraulic properties for soils 1 and 2 (Case 5.1).

Soil 1 Soil 2

�sat 0.3658 0.4686
�res 0.0286 0.1060
� cm−1 0.0280 0.0104
N 2.2390 1.3954
Ksat (m=s) 6:26× 10−3 1:5167× 10−4

Table II. Initial and boundary conditions (Case 5.1).

Case Initial condition Upper �ux (m=s) Lower �ux (m=s) Simulation time (h)

1.1 Moist 8:333× 10−7 0.0 4
1.2 Moderate 8:333× 10−7 0.0 8
1.3 Very dry 8:333× 10−7 0.0 12
2.1 Moist 3:472× 10−6 0.0 3.8
2.2 Moderate 3:472× 10−6 0.0 5
2.3 Very dry 3:472× 10−6 0.0 6

Figure 1. One-dimensional unsaturated �ow (Case 5.1).
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Figure 2. One-dimensional variably saturated �ow (Case 5.1).

Table III. Number of time steps required with average time-step
size in seconds given in brackets (Case 5.1).

Case �=0:0 �=−0:02 �=−0:04 �=−0:06
1.1 34 (423.5) 22 (654.5) 21 (685.7) 21 (685.7)
1.2 142 (202.8) 46 (626.1) 40 (720.0) 37 (778.4)
1.3 Not completed 83 (520.9) 74 (583.8) 72 (600.0)
2.1 61 (224.3) 33 (414.5) 27 (506.7) 25 (547.2)
2.2 212 (84.9) 58 (310.3) 44 (409.1) 37 (486.5)
2.3 Not completed 94 (229.8) 65 (332.3) 54 (400.0)

were run with and without applying the transformation. The sharp changes in the water
pressure head resulted in the switching algorithm reverting to the mixed form in all the
cases.
For the cases with very dry initial conditions, 1.3 and 2.3, the h-based method required

an excessively small time-step size, of the order of 10−8, to achieve convergence within
50 iterations. For all other cases the simulations run times were approximately 1 s for a
mesh consisting of 100 elements on a PC with an AMD Athlon 1600 + 1:39Ghz processor.
Table III, gives the total number of time steps taken per simulation with the transformation
parameter set to �=0:0, �=−0:02, �=−0:04 and �=−0:06. The average time-step size
in seconds is given in brackets. In all cases applying the transformation enabled convergent
solution with much larger time steps. Setting �=−0:04 gave the fastest solutions as it required
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the least number of iterations within a time step. Initially, small time steps were required as
the solution penetrates the dry soil, after approximately 0.15 days the maximum time-step size
of 900 s is reached and maintained until towards the end of the simulation when it reduces
as the perched water table develops.

5.2. Problem 2: one-dimension drainage

This case involves vertical drainage through layered soil from initially saturated conditions.
At time t=0, the pressure head at the base of the column is reduced from 200 to 0 cm.
During the subsequent drainage, a no-�ow boundary condition is applied to the top of the
column. Although a one-dimensional problem, it is a challenging test for a numerical method
because of the sharp discontinuity in the moisture content that occurs at the interface between
two material layers. During drain-down the middle coarse soil tends to restrict drainage from
the upper �ne soil and high saturation levels are maintained in the upper �ne soil for a
considerable period of time. Marinelli and Durnford [47] provide a semi-analytical solution to
the problem. The hydraulic properties of the soils are given in Table IV. The Brooks–Corey
model is used to prescribe the pressure–moisture relationship. The soil pro�le is soil 1 for
60 cm¿z¿0 cm and 200 cm¿z¿120 cm, and soil 2 for 120 cm¿z¿60 cm, where z is the
height of the column.
Simulations were performed on a �ne mesh of 150 elements and a coarser mesh of 75

elements. The iterative procedure within a time step was considered converged when the
di�erence in the water pressure head between two successive iterations fell below 10−4. The
switching algorithm reverted to the h-based form after the �rst couple of time steps. All
transformed methods were in good agreement and the �ne mesh solutions were in excellent
agreement with the semi-analytical results of Marinelli and Durnford [47]. The simulation
times ranged from 10 to 14 s, with the �ner mesh simulation being slightly quicker as faster
convergence was achieved within a time step. The simulations were also performed without
the transformation, �=0. The switching method, which reverted to the h-based form, required
very small time steps to achieve convergence in the initial stages. The untransformed mixed
method failed to achieve convergence with a minimum time-step size of 0.001 s. Figures 3
and 4 show the time-step size and number of iterations required to achieve convergence in
a time step, for the transformed mixed, transformed switching algorithm and untransformed
switching method. Figure 5 shows the saturation predictions along with the semi-analytical
solutions at a time of 1 050 000 s (approximately 12 days).

Table IV. Soil hydraulic properties (Case 5.2).

Soil 1 (�ne soil) Soil 2 (coarse soil)

�sat 0.35 0.35
�res 0.07 0.035
� cm−1 0.0286 0.0667
N 1.5 3.0
Ksat (cm=s) 9:81× 10−5 9:81× 10−3
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Table V. Hydraulic properties of the soils (Case 5.3).

Clay Sand

�sat 0.4686 0.3658
�res 0.1060 0.0286
�m−1 1.04 2.8
N 1.3954 2.239
Ksat (m=s) 1:516× 10−6 6:262× 10−5

Table VI. Simulation and CPU times for Case 5.3 (* initial results).

�=0:0 �=−2:0 �=−4:0 �=−6:0
Run time (s) Not completed 111 91 199
No. of time steps Not completed 1080 1080 1091
Average �t (s) * Approx 10−6 1000 1000 990

5.3. Problem 3: two-dimensional unsaturated �ow into heterogeneous soil

The �rst two-dimensional problem is purely unsaturated �ow into a region of clay and sand,
Figure 6. The region is 5m wide× 3m deep divided into nine alternating blocks of clay and
sand. A �ux of water at 5 cm=day is applied across the middle of the top block of sand, 1m
wide. A zero-�ux boundary condition is applied to all other boundary surfaces. The hydraulic
properties of the soils are given in Table V. The van Genuchten model is used to prescribe
the pressure–moisture relationship. The solution domain was meshed using a spatial step size
of 5 and 2.5 cm giving a total of 12 000 and 24 000 elements and the simulation was run
for 12.5 days. The moisture content and pressure head contours are shown in Figures 7 and
8, respectively, and compare well to those published in References [15, 29]. To compare the
accuracy with respect to �ux, the vertical �ux at, x=2:55m, and horizontal �ux at, y=0:95m,
are plotted along side the very dense grid solutions (using spatial step size of 1 cm) of Pan
and Wierenga in Figures 9 and 10, respectively. The solutions obtained using a coarse grid
is in excellent agreement with the very dense grid.
The coarse grid simulation was run using a transform parameter of �=0:0, �=−2:0,

�=−4:0 and �=−6:0. Applying no transformation required a very small time step, in the
order of 10−6, to achieve convergence within a maximum of 30 iterations. When a transfor-
mation was employed all simulations converged well and the moisture content and pressure
head results were all in agreement. The simulation run times on a PC with and with AMD
Athlon 1600 + 1:39Ghz processor are given in Table VI along with number of time steps
and average time-step size, �t. Using a transformation dramatically improved convergence
and enabled much larger time-step sizes to be employed, a maximum time-step size of 1000 s
was speci�ed. The maximum time-step size was employed for transformation parameters of
�=−2:0 and �=−4:0. For �=−6:0 the simulation initially required a smaller time-step size
of 110 s which increased to 1000 s over the �rst three simulated hours. The transformation
parameter of �=−4:0m−1 required the least number of iterations to achieve convergence and
had the fastest simulation time.
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Figure 3. Time-step size employed in mixed, transformed and untransformed switching algorithm.

Figure 4. Number of iterations required within a time step for converging solutions
for mixed and switching algorithm.
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Figure 5. Saturation predictions after approximately 12 days for Case 5.2.

Figure 6. Unsaturated �ow into heterogeneous soil, showing resultant �ux vectors after 12.5 days.
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Figure 7. Saturated contour plot after 12.5 days.

Figure 8. Contour pressure head (in m) after 12.5 days.

5.4. Problem 4: two-dimensional variably saturated �ow

The second two-dimensional test problem involves �ow into initially very dry layered soil of
sand and clay with a developing water table. The hydraulic properties of the sand and clay
are taken as Case 1, given in Table I. To achieve a perched water table, a 3m× 1m region
of sand was bounded by clay, as shown in Figure 11. A water �ux rate of 50 cm per day
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Figure 9. Horizontal �ux at depth 0.95m for unsaturated case after 12.5 days.

Figure 10. Vertical �ux at x=2:55m for unsaturated case after 12.5 days.
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Figure 11. Geometry of perched water table problem showing resultant �ux vectors after 1 day.

Table VII. Simulation and CPU times for Case 5.4 (* initial results).

�=0:0 �=−2:0 �=−4:0 �=−6:0
Run time (s) Not completed 1036 15 16
No. of time steps Not completed 2780 98 98
Average �t (s) * Approx 10−6 31 882 882

was applied to the top sand surface and the simulation period was one day. A uniform mesh
consisting of 6000 and 12 000 elements with a spatial step size of 5 and 10 cm, respectively,
was used in the simulation. This perched water table problem is a di�cult case to simulate.
The case was simulated using a transformation parameter � of 0, −2 and −4m−1. Convergence
problems were encountered with zero transformation and very small time steps were required,
in the order of 10−6 s. A transformation parameter of �=−2m−1 improved convergence, but
increasing the value of � to −4 and −6m−1 gave fast converging solutions with much larger
time-step sizes. Table VII gives the simulation run times, number of time steps and average
time-step size, �t. The highly non-linear nature of the problem meant that more iterations were
required per time step to achieve convergence than for the purely unsaturated �ow problem.
The contour plots of saturation and pressure head are shown in Figures 12 and 13,

respectively. All completed simulations gave comparable predictions that agree well with
published results [15, 17, 29]. After approximately half a day, a water table begins to develop
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Figure 12. Saturation levels after one day.

Figure 13. Pressure head contour after one day.

at the interface of the sand and clay layers, at a depth of approximately 1m. Figures 14
and 15 show the �uxes, the vertical �ux at, x=2:55m, and horizontal �ux at, y=0:95m,
plotted along side the very dense grid solutions of Pan and Wierenga. All solutions obtained
are in good agreement with the dense grid solutions.
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Figure 14. Horizontal �ux at depth 0.95m for variably saturated case after one day.

Figure 15. Vertical �ux at x=2:55m for variably saturated case after one day.
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6. THREE-DIMENSIONAL FLOW CASE

Finally, the �ow algorithm is illustrated on a three-dimensional mesh drawn from an ore heap-
leaching problem. The mesh, geometry and dimensions of the domain are shown in Figure 16.
The mesh consists of 24 000 hexahedral elements. There is an inlet positioned at the centre
front of the top surface and two outlets positioned at the back of the bottom surface. The
inlet surface area is 1m× 1m; the outlet surface areas are both 0:5m× 1m. All other surfaces
assume a no-�ux boundary condition. The van Genuchten parameters for the ore are, �=4m−1

and N =3. The simulation is run for 21 days. Three cases were considered, the �rst two cases
assume homogeneous ore with an e�ective permeability of 2:5× 10−7 m=s at an ore moisture
content of 12%. In the �rst case a constant �ux of 1:7× 10−6 m=s of water is applied to
the inlet surface for a 7-day period. In the second case a constant �ux of 2:7× 10−6 m=s is
applied to the inlet surface for the full 21-day period to achieve saturated conditions at the
base of the heap. In the �nal case a block, dimensions 2m× 1m× 1m, of low-permeability
ore, with e�ective permeability of 2:5× 10−10 m=s at an ore moisture content of 12%, was
inserted into the central front area of the domain. A constant �ux of 2:7× 10−6 m=s is applied
for the full 21-day period. For all simulations, very dry initial conditions were assumed, with
a 6% initial moisture level.

6.1. Homogeneous case-unsaturated

Saturation contour plots for the �rst homogeneous case are shown in Figure 17, at 1, 7, 14
and 21 days. A �ux is applied to the inlet surface for 7 days; the moisture content builds up
in the area below the inlet reaching a maximum saturation level of 0.95 on day 10. After the
�ux is turned o� on day 7, the saturation levels continue to increase slightly at the base over
the next 3 days and then gradually reduce as the solution drains through the outlets. After 21
days the area directly under the inlet at the base of the geometry has a maximum saturation
level of 70%. The resultant �ux vectors on day 2, 4, 6 and 8 are shown in Figure 18.

Figure 16. Geometry of heap and three-dimensional mesh.
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Figure 17. Saturation contour plots for homogeneous unsaturated �ow.

6.2. Homogeneous case—variably saturated �ow

In the second case the solution is applied to the homogeneous material for the full 21-day
simulation period, giving regions with fully saturated conditions, as illustrated in Figure 19.
The solution travels freely down to the base of the domain, where saturation levels build in
the area under the inlet surface. Fully saturated conditions are encountered in the base area
after approximately 7 days, see Figure 20.

6.3. Heterogeneous case—variably saturated �ow

Finally, the solution is applied for heterogeneous material with a low-permeability region,
in the centre front of the geometry, at a distance of 1m under the inlet surface. Figure 21
shows the saturation levels in the domain at day 1, 7, 14 and 21. The low-permeability re-
gion prevents the solution from travelling straight through the domain and an area under the
block of low-permeability material remains solution free for a long period of time. After
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Figure 18. Flux vector plots for homogeneous unsaturated �ow.

5-days application of the area at the top of the low-permeability region has neared satura-
tion. Saturation at the base of the heap occurs on day 9. The maximum saturation level in
the low-permeability material is 0.95 at the top region and over next two-week period the
moisture gradually spreads through the region of low permeability to a maximum of 0.5 in
the lower region. Figures 22 and 23 show the resultant �ux as it encounters the region of low
permeability and the solution chooses the route of highest permeability.
The solution recovered though the outlets are shown in Figure 24 for constant �ux homoge-

neous and heterogeneous cases. Solution is initially recovered on day 4 for the homogeneous
material and day 5 for the heterogeneous case.

6.4. Computational performance

The CPU times for the solution of �ow can be approximated from the three-dimensional test
cases. All simulations were performed on a Pentium 4, 2.50GHz-M processor. The mesh used
in the three-dimensional simulations comprised of 24 000 hexahedral elements. The memory
requirements were 5.24 megabytes, giving an approximate memory demand per mesh ele-
ment of 229 bytes. The simulation time for both the homogeneous unsaturated �ow cases
was approximately 16min. The simulations, involving variably saturated �ow, required 8 and
14min for the homogeneous and heterogeneous cases, respectively. CPU time will vary to
some extent depending upon the complexity of the problem, e.g. whether layered material or
perched water tables are involved.
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Figure 19. Saturation levels, homogeneous—variably saturated �ow.

7. CONCLUSION

The objectives of the �rst phase of our heap-leaching modelling research programme included
the development and implementation of a numerical procedure for the e�ective
simulation of liquid �ow through porous media under variably saturated conditions within
complex three-dimensional geometries, in the context of conventional commercially supported
general-purpose �nite-volume-based CFD codes using cell-centred discretization techniques
on three-dimensional unstructured meshes. This contribution describes the design, implemen-
tation, testing and evaluation of an e�ective procedure for the simulation of variably saturated
�ow in porous media with spatially varying properties. The procedure involves:

• The transformation variable �rst de�ned by Pan and Wierenga that eliminates the sharp
discontinuity at the moisture interface.
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Figure 20. Saturation at base, homogeneous—variably saturated �ow.

• A simple switching method between the mixed Picard iteration scheme and the standard
h-based Picard iteration proposed by Hao et al. for e�cient long time simulations of
water �ow in soils with frequent in�ltration and deep drainage processes.

• A fully implicit �nite volume discretization on a �xed unstructured mesh using tetrahedral
up to hexahedral elements where approximations are cell centred (i.e. the control volume
equals the element volume) with a diagonally pre-conditioned conjugate-gradient solver
for the transformed pressure head.

• Adaptive time stepping to ensure convergence and CPU e�ciency.
• The structuring of the procedure to enable the inclusion of any pressure head–moisture
saturation level relationship–van Genuchten and Brooks–Corey are included as standard.

• The implementation of the algorithm within the PHYSICA computational modelling soft-
ware framework for multi-physics simulation.

• An evaluation of the procedure on a range of test problems that provide challenges at
the physical extremes of variably saturated �ow characteristics.

• A demonstration of the model in analysing a three-dimensional geometry and �ow con-
ditions similar to those of �ow through leached heaps.
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Figure 21. Saturation levels, heterogeneous material.

In summary, the model �ow algorithm:

• Solved accurately and with computational e�ciency, some discriminating tests cases
involving relatively extreme conditions with regard to (a) initial dry conditions, (b) sharp
boundaries between the unsaturated and saturated conditions, and to drainage scenarios.

• Shows the enhanced convergence behaviour of the transformed equations, enabling so-
lutions on a much coarser mesh and employing larger time steps.

• Is comprehensive (in that it is structured to represent any kind of porous �ow model;
Brooks–Corey and van Genuchten are implemented as standard options).

• Has been demonstrated on a basic three-dimensional geometry to indicate its potential
as the basis for heap-leach modelling. Not only did the model solve the problems in
a robust fashion, but the procedure was also computationally e�cient, in simulating 30
days behaviour in less than 20min on a conventional PC processor.
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Figure 22. Flux vectors on day 3, heterogeneous material.

Figure 23. Flux vectors on day 5, heterogeneous material.

Other aspects of the heap-leach modelling programme have involved the design and
implementation of the reaction models to characterize the extraction rates as a function of
local conditions and predict the behaviour of the pregnant solution as it exits the heap, see, for
example, References [48, 49]. A further stage will involve incorporating the variably saturated
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Figure 24. Recovered solution.

�ow algorithm described above within the heap-leaching models currently under development
and their evaluation on high-performance parallel clusters.
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